3D PRINTING AND THE NEW MATERIALS IN MEDICINE

A. P. G. CASTRO

3D PRINTING

- 3D printing or additive manufacturing is a process of making 3D objects from a digital file.
- The creation of a 3D printed object is achieved using additive processes.
 - Laying down successive layers of material until the object is finalised.
 - Each of these layers can be seen as a thinly sliced crosssection of the object.

3D PRINTING

TISSUE ENGINEERING

 The goal of Tissue Engineering (TE) is to design and assemble functional constructs that restore, maintain, or improve damaged tissues.

- TE combines scaffolds, cells, and biologically active molecules into functional tissues.
- Scaffolds are used in TE as hosts for cell seeding and proliferation

TISSUE ENGINEERING

- 3D printing and TE are often related
 - Research has been focused on finding the best scaffold for each specific application, depending mainly on:
 - Geometry/design
 - Mechanical properties
 - Biodegradation rate
 - Computer methods are essential to start (and evaluate) the process

TISSUE ENGINEERING

- Computational modelling ensures geometrical accuracy for the implants
- Numerical simulation allows for the prediction of tissue response upon implantation:
 - Cell differentiation and profileration
 - Biodegradation/biointegration
 - Mechanical overloading
 - Bone remodelling/healing

MECHANOBIOLOGY

 Cells respond to both biochemical and biophysical stimuli, across different levels:

Adapted from Garcia-Aznar et al., 2021

MECHANOBIOLOGY

• It is then possible to go from the macromechanical stimuli to the micromechanical responses of the cells:

Mechano-regulatory pathway diagram from Lacroix and Prendergast (2002), updated by Castro and Lacroix (2018)

- With 3D Printing, it is possible to fabricate the most adequate structures to each situation:
 - Constant feedback for design requirements
 - Evaluation of materials

 With 3D Printing and numerical simulation, it is possible to predict the mechanobiology environment:

Adapted from Castro et al., 2020

• From 3D modelling to fabrication:

 From medical imaging to implantation:

Adapted from Zopf et al., 2014

From 3D modelling to implantation:

Adapted from Ackland et al., 2017

CONCLUSIONS

- Different techniques come together towards better (than ever) biomedical devices:
 - ➤ Tissue Engineering & Mechanobiology predict what is needed to replace a tissue or promote its regeneration
 - Implant Design starts in medical imaging and goes through numerical simulation before reaching the fabrication stage
 - > 3D Printing allows for the accurate fabrication of the solutions
- New materials and designs result from this integrated framework

ACKNOWLEDGEMENTS

√ Thank you for your attention!

- This work was partially supported by Fundação para a Ciência e Tecnologia:
 - Through IDMEC, under LAETA project UIDB/50022/2020
 - Project PTDC/BBB-BMC/5655/2014
- Biomechanics Research Group at IDMEC-IST:
 - https://biomec.idmec.tecnico.ulisboa.pt

andre.castro@tecnico.ulisboa.pt

@andrepgcastro

3D PRINTING AND THE NEW MATERIALS IN MEDICINE

A. P. G. CASTRO

